Notiz / **Note**

A New Convenient One-Step Synthesis of $[(\text{SCI})_2N]^+[\text{SbCl}_6]^-$ Containing the $[(SCI)₂N]^+$ Cation

Matthias Broschag, Axe1 Schulz, and Thomas M. Klapotke"

Institut für Anorganische und Analytische Chemie, Technische Universität Berlin, Straße des 17. Juni 135, D-10623 Berlin, Germany

Received May 27, 1994

Key Words: Sulfur-nitrogen chemistry / Sulfur-nitrogen-chlorine cation / Calculations, ab initio

The hexachloroantimonate salt of the $[(SCl)_2N]^+$ cation, chemical analyses and vibrational spectroscopy (IR, Raman).
 $[(SCl)_2N]^+[SbCl_6]^-(1)$, was prepared in a one-step reaction The geometrical and the vibrational data were al $[(SCI)_2N]^+[SbCl_6]^-(1)$, was prepared in a one-step reaction lated in good yield (60%). The compound was identified by mental results.

from easily available $[SCl₃]⁺ [SbCl₆]$ and $N(SiMe₃)₃$ and iso- puted ab initio and are in good agreement with the experi-

The [SNS]⁺ cation is probably the most important building block in sulfur-nitrogen chemistry $[1]$. The reactivity of this binary cation toward alkenes, alkynes, and nitriles is well documented^[1,2]. Quite recently, Banister et al. published a general and easy route to $[SNS]^+$ salts starting from salts containing the $[(SCI)_2N]^+$ cation $(Eq. (1)]^{[2]}$.

$$
[(SCl)2N]+[AICl4]- + SnCl2 \rightarrow [SNS]+[AICl4]- + SnCl4 (1)
$$

However, salts of the cation $[(SCI)_2N]^+$ are not commercially available. Usually $(SCI)_{2}N^{+}$ salts are prepared from $(NSCI)_{3}$ either by reaction with SCI_2 and a metal chloride (e.g. AlCl₃ or SbCl₅) [Eq. (2), (3)] or by reaction with $SC1_2/AgAsF_6$ [Eq. (4)]^[2,3,4].

$$
(NSCl)3 + 3 SCl2 + 3 AlCl3 \rightarrow 3 [(SCl)2N][AlCl4] (2)
$$

$$
(NSCl)3 + 3 SCl2 + 3 SbCl5 \rightarrow 3 [(SCl)2N][SbCl6] (3)
$$

$$
(NSCl)3 + 3 SCl2 + 3 AgAsF6 \rightarrow 3 AgCl + 3 [(SCl)2N][AsF6] (4)
$$

Quite recently, Minkwitz et al. reported on a very interesting synthesis of $[(\text{SCI})_2\text{N}][\text{SbCl}_6]$ from protonated hydrazoic acid and S_2Cl_2 [Eq. (5)]^[5].

$$
[H_2N_3][SbCl_6] + 2 S_2Cl_2 \rightarrow 1 + 2 HCl + N_2 + 2/8 S_8 \tag{5}
$$

Results and Discussion

The compound $[(SCI)_2N][SbCl_6]$ (1) was prepared from $[SCI₃][SbCl₆]$ and commercially readily available $N(SiMe₃)$ ₃ [Eq. (6)].

S₂C₁₂ [Eq. (3)]^[47].
\n[H₂N₃][SbCl₆] + 2 S₂Cl₂
$$
\rightarrow
$$
 1 + 2 HCl + N₂ + 2/8 S₈ (5)
\n**Results and Discussion**
\nThe compound [(SCI₂N][SbCl₆] (1) was prepared from [SCI₃][SbCl₆] and commercially readily available N(SiMe₃)₃ [Eq.
\n(6)].
\n2 [SCI₃][SbCl₆] + N(SiMe₃)₃ $\xrightarrow{CCI_4}$
\n[(SCI₂N][SbCl₆] + 3 Me₃SiCl + SbCl₅ + Cl₂ (6)
\n1

Since **1** is the only product according to Eq. **(6)** that is not soluble in $CCI₄$ it can be separated by filtration. After digestion with CC14 the yellow material (1) was dried in dynamic vacuo and found to be analytically pure. The vibrational data of **1** are in good agreement with those previously reported^[2] and compare also well with our ab initio computations (Table *1).* Although ab initio calculations at the HF level usually predict too high frequencies due **to** the harmonic potential applied, the computed frequencies for the $[(SCI)₂N]^+$ cation (Table 1) compare very well with the experimental data and are just slightly too low.

Table 1. Computed (HF)^[a] and experimentally observed vibrational frequencies for the $[(SCI)_2N]^+$ cation in $[(SCI)_2N][SbCl_6]$ (1)

HF ^[a]	IR ^[b]	Raman ^[c]	Assignment ^[d]	
1088 (494)	1127 s	1128 (< 1)	v_{as} NS ₂	
710 (49)	720 s	718(2)	v_s NS ₂	
599 (127)	662 m	654(1)	δ SNS	
576 (76)	526 s	519(2)	$v_{as}SCl$	
492 (12)	508 m	503 (1)	v_ssCl	
413 (10)	447 m	453(1)	δ_{s} CISN	
225(2)	360s	n.o.	δ_{ss} CISN	
128(0)	[e]	201(3)	$\tau_{\rm as}$	
105 (0.1)	[e]	126(1)	$\tau_{\rm s}$	

 L^{a} **HF**/6-31+G* basis set; intensities refer to IR intensities. $-\text{L}^{\text{b}}$ Pow-^[a] HF/6-31+G* basis set; intensities refer to IR intensities. $-$ ^[b] Pow-
der between KBr plates, $25^{\circ}C_{.}$ - ^[c] 647.09 nm, 25 mW, 25[°]C. der between KBr plates, 25° C. - ^[e] 647.09 nm, 25
^[a] For assignment cf. also ref.^[11]. - ^[e] Out of scale.

The structure of the $[(\text{SCI})_2\text{N}]^+$ cation in $[(\text{SCI})_2\text{N}][\text{SbCl}_6]$ was recently determined by X-ray diffraction^[5]. As it is the case for most of the known $[(SCI)_2N]^+$ salts (e.g. $[SbCl_6]^{-15}$, $[BCI_4]^{-16}$, $[AICl_4]$ ^{-[7]}, $[MoCl_5(NSCl)]$ ^{-[8]}), the cation exhibits an u-shaped geometry (C_{2v}) in the solid state with an NSN angle of 150 \pm 1^o. The only known exception represents the salt $[(\text{SCI})_2\text{N}][\text{Re}_2\text{Cl}_9]^{[9]}$ in which the SNS angle is compressed to 134°. In order to determine the most stable structure for the isolated cation we computed the $[(\text{SCI})_2N]^+$ cation ab initio at the HF and correlated MP2 level of theory. The C_{2v} u isomer with an SNS angle close to 150° clearly turned out to be the most stable species (Table 2) which represents a true minimum according to the frequency analysis. The $[(\text{SCI})_2N]^+$ cation with an SNS angle of 133.6" does not represent a minimum structure at the HF or MP2 level and lies 5.5 kcal mol⁻¹ above the computed minimum structure (MP2, SNS 152.2'). Since the potential represented by a variation of the SNS angle in the

Chetn. Ber. 1994,127,2187-2188 *0* VCH Verlagsgesellschaft mbH, D-69451 Weinheim, 1994 0009-2940/94/1111-2187 \$ 10.00+.25/0

Table 2. Experimentally observed and ab initio computed structural parameters for the $[(\text{SCI})_2\text{N}]^+$ cation (bond lengths in A, angles in ^o, $E_{\text{rel.}}$ in kcal mol⁻¹). Corresponding anions: **1** $[\text{SbCl}_6]^-$, **2** $[\text{AlCl}_4]^-$, **3** [MoCl,(NSCI)]~, **4** [Re2C19]-

	$d(N-S)$	$d(S - Cl) \leq \angle(SNS)$		\angle (CISN)	$E_{\rm rel}$
1 $\frac{2}{3}$ $\overline{\mathbf{4}}$	1.533(4) 1.528(2) 1.535(1) 1.615(11)	1.911(7) 1.992(1) 1.988(7) 1.984(6)	149.9(3) 151.0(2) 150.9(9) 133.6(17)	110.4(2) 110.6(2) 110.0(5) 117.6(9)	
MP2 $(FC)^{[a]}$ MP2 $(FC)^{[a,b]}$	1.553 1.593	2.028 2.016	152.2 133.6	111.7 116.9	0.0 5.5

Figure 1. Energy potential curve of the SNS angle in the $[(SCI)₂N]^+ (HF/6-31+G^*)$

schaft and the *Fonds der Chemischen Industrie* is gratefully acknowledged. [20 1/94]

Synthesis of [SC13/[SbC16/: Sulfur (1.00 g, 31.19 mmol) was suspended in 50 ml of CH_2Cl_2 and allowed to react at room temp. with a solution of SbCl₅ (9.32 g; 31.19 mmol) and chlorine (4.42) g: 62.37 mmol) in 50 ml of CH_2Cl_2 . The reaction mixture was stirred for 12 h, the precipitated white solid was filtered off and three times washed with 20 ml of CH_2Cl_2 . The product was dried in dynamic vacuo and obtained as analytically pure white solid in 82% yield (12.10 g). - IR: $\tilde{v} = 530 \text{ cm}^{-1} \text{ m}$ (v₃SCl⁺), 518 m $(v_3SCl_3^+)$, 360 sh $(v_3SbCl_6^-)$.

Synthesis of $[(SCl),N][SbCl_6]$ **(1):** $[SCl_3][SbCl_6]$ **(3.00 g, 6.34** mmol) was suspended in 50 ml of CCl₄ and allowed to react at room temp. with a solution of $N(SiMe₃)$ ₃ (Aldrich, 0.741 g, 3.172. mmol) in 100 ml of CCl₄. The reaction mixture was stirred for 2 h, the precipitated yellow solid was filtered off and three times digested with 50 ml of CCl₄. The product was dried in dynamic vacuo and obtained as analytically pure yellow powder in 60% yield (0.92 Ial HF/6-31+G* basis set. - ^[b] MP2 (FC) computation for a fixed g). - Cl₈NS₂Sb (483.5): calcd. N 2.90, S 13.26; found N 2.85, S
SNS angle of 133.6°. 13.45 - **IR** and Raman: See Table 1: [SbCl.]⁻ Raman: $\tilde{v} = 3$ 13.45. - IR and Raman: See Table 1; $[SbCl_6]^-$, Raman: $\tilde{v} = 332$ cm⁻¹ (10) (v₁), 284 (2) (v₂), 175 (9) (v₅). - IR: $\tilde{v} = 351$ cm⁻¹ s (v₃).

Computational Methods: The computations were carried out with the Gaussian 92 program using the $6-31+G^*$ basis set^[10].

- **[I] S.** Parsons, J. Passmore, *Acc. Chem. Res.* **1994,** *27,* 101, and references therein.
- L2] B. Ayres, A. J. Banister, P. D. Coates, M. I. Hansford, J. M. Rawson, C. E. E Rickard, M. B. Hursthouse, K. M. Abul Ma-
- lik, M. Motevalli, *J. Chem. Soc., Dalton Trans.* **1992**, 3097.
^[3] G. G. Alange, A. J. Banister, P. J. Dainty, *Inorg. Nucl. Chem. Lett.* **1979,** *15,* 175.
- **L4J** A. J. Banister, A. G. Kendrick, *J Chem. Soc., Dalton Tram* **1987,** 1565.
- r51 R. Minkwitz, U. Budde, B. Back, H. Preut, *Z. Naturforsch., Teil B,* **1993,** *48,* 243.
- 0. Glemser, B. Krebs, J. Wegener, E. Kindler, *Angew. Chem.* **1969**, *81*, 568; *Angew. Chem. Int. Ed. Engl.* **1969**, *8*, 598. ^[7] O. Glemser, E. Kindler, B. Krebs, R. Mews, F. M. Schnepel, J. $[6]$
-
- 130 140 150 160 170 ^[8] U. Müller, P. Klingelhöfer, U. Kynast, K. Dehnicke, *Z. Anorg.*
	- *Allg. Chem.* **1985,** *520,* 18. **19]** H. G. Hauck, P Klingelhofer, U. Miiller, **K.** Dehnicke, *Z. Anorg. Allg. Chem.* **1984,** *510,* 180.
- *Anorg. Attg. Chem.* 1984, 310, 180.
 $[10]$ M. J. Frisch, G. W. Trucks, M. Head-Gordon, P. M. W. Gill, M. W. Wong, J. B. Foresman, B. *G.* Johnson, H. B. Schlegel, M. A. Robb, E. **S.** Replogle, R. Gomperts, K. Andres, K. Raghavachari, J. **S.** Binkley, C. Gonzales, R. L. Martin, D. J. Fox, D. J. DeFrees, J. Baker, J. J. **P.** Stewart, J. A. Pople, *Gaus-*Continuous financial support by the *Deutsche Forschungsgemein- sian 92; Revision B,* Gaussian Inc., Pittsburgh, pA, **1992,**
	- [Ill E-M. Schnepel, *Spectrochim. Acta, Part A,* **1980,** *36,* 895.